Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
ASAIO J ; 2023 May 08.
Article in English | MEDLINE | ID: covidwho-2316918

ABSTRACT

Interhospital transport of acute respiratory distress syndrome (ARDS) patients bears transport-associated risks. It is unknown how interhospital extracorporeal membrane oxygenation (ECMO) transfer of COVID-19 patients by mobile ECMO units affects ARDS mortality. We compared the outcome of 94 COVID-19 patients cannulated in primary care hospitals and retrieved by mobile ECMO-teams to that of 84 patients cannulated at five German ECMO centers. Patients were recruited from March 2020 to November 2021. Twenty-six transports were airborne, 68 were land-based. Age, sex, body-mass-index, Simplified Acute Physiology Score (SAPS) II, days invasively ventilated, and P/F-Ratio before ECMO initiation were similar in both groups. Counting only regional transports (≤250 km), mean transport distance was 139.5 km ± 17.7 km for helicopter (duration 52.5 ± 10.6 minutes) and 69.8 km ± 44.1 km for ambulance or mobile intensive care unit (duration 57.6 ± 29.4 minutes). Overall time of vvECMO support (20.4 ± 15.2 ECMO days for transported patients vs. 21.0 ± 20.5 for control, p = 0.83) and days invasively ventilated (27.9 ± 18.1 days vs. 32.6 ± 25.1 days, p = 0.16) were similar. Overall mortality did not differ between transported patients and controls (57/94 [61%] vs. 51/83 [61%], p = 0.43). COVID-19 patients cannulated and retrieved by mobile ECMO-teams have no excess risk compared with patients receiving vvECMO at experienced ECMO centers. Patients with COVID-19-associated ARDS, limited comorbidities, and no contraindication for ECMO should be referred early to local ECMO centers.

2.
J Transl Autoimmun ; 5: 100171, 2022.
Article in English | MEDLINE | ID: covidwho-2284092

ABSTRACT

Long COVID is a collection of symptoms as a late sequelae of SARS-CoV-2 infection. It often includes mental symptoms such as cognitive symptoms, persisting loss of smell and taste, in addition to exertional dyspnea. A role of various autoantibodies (autoAbs) has been postulated in long-COVID and is being further investigated. With the goal of identifying potentially unknown autoAbs, we screened plasma of patients with long COVID on in-house post-translationally modified protein macroarrays including citrullinated, SUMOylated and acetylated membranes. SUMO1ylated isoform DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 35 (SUMO1-DHX35) was identified as only candidate antigen. In adult patients with long COVID, IgG autoAbs against SUMO1-DHX35 of IgG class were found in seven of 71 (9.8%) plasma samples, of IgM and IgG class in one of 69 (1.4%) samples, not in 200 healthy adult controls, not in 442 healthy children, and 146 children after SARS-CoV-2 infection. All autoAb-positive seven patients were female. AutoAb titers ranged between 200 to up to 400 By point mutagenesis and expression of FLAG-tagged mutants of DHX35 in HEK293 cells, and subsequent SUMOylation of purified constructs, lysine 53 was identified as a unique, never yet identified, SUMOylation site. The autoAbs had no reactivity against the non-SUMO1ylated mutant (K53R) of DHX35. To summarize, autoAbs against SUMO1-DHX35 were identified in adult female patients with long-COVID. Further studies are needed to verify the frequency of occurrence. The function of DHX35 has not yet been determined and there is no available information in relation to disease implication. The molecular mechanism causing the SUMOylation, the potential functional consequences of this post-translational modification on DHX35, and a potential pathogenicity of the autoAbs against SUMO1-DHX35 in COVID-19 and other possible contexts remain to be elucidated.

3.
J Clin Med ; 11(21)2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2082052

ABSTRACT

Background: There is ongoing debate whether lung physiology of COVID-19-associated acute respiratory distress syndrome (ARDS) differs from ARDS of other origin. Objective: The aim of this study was to analyze and compare how critically ill patients with COVID-19 and Influenza A or B were ventilated in our tertiary care center with or without extracorporeal membrane oxygenation (ECMO). We ask if acute lung failure due to COVID-19 requires different intensive care management compared to conventional ARDS. Methods: 25 patients with COVID-19-associated ARDS were matched to a cohort of 25 Influenza patients treated in our center from 2011 to 2021. Subgroup analysis addressed whether patients on ECMO received different mechanical ventilation than patients without extracorporeal support. Results: Compared to Influenza-associated ARDS, COVID-19 patients had higher ventilatory system compliance (40.7 mL/mbar [31.8-46.7 mL/mbar] vs. 31.4 mL/mbar [13.7-42.8 mL/mbar], p = 0.198), higher ventilatory ratio (1.57 [1.31-1.84] vs. 0.91 [0.44-1.38], p = 0.006) and higher minute ventilation at the time of intubation (mean minute ventilation 10.7 L/min [7.2-12.2 L/min] for COVID-19 vs. 6.0 L/min [2.5-10.1 L/min] for Influenza, p = 0.013). There were no measurable differences in P/F ratio, positive end-expiratory pressure (PEEP) and driving pressures (ΔP). Respiratory system compliance deteriorated considerably in COVID-19 patients on ECMO during 2 weeks of mechanical ventilation (Crs, mean decrease over 2 weeks -23.87 mL/mbar ± 32.94 mL/mbar, p = 0.037) but not in ventilated Influenza patients on ECMO and less so in ventilated COVID-19 patients without ECMO. For COVID-19 patients, low driving pressures on ECMO were strongly correlated to a decline in compliance after 2 weeks (Pearson's R 0.80, p = 0.058). Overall mortality was insignificantly lower for COVID-19 patients compared to Influenza patients (40% vs. 48%, p = 0.31). Outcome was insignificantly worse for patients requiring veno-venous ECMO in both groups (50% mortality for COVID-19 on ECMO vs. 27% without ECMO, p = 0.30/56% vs. 34% mortality for Influenza A/B with and without ECMO, p = 0.31). Conclusion: The pathophysiology of early COVID-19-associated ARDS differs from Influenza-associated acute lung failure by sustained respiratory mechanics during the early phase of ventilation. We question whether intubated COVID-19 patients on ECMO benefit from extremely low driving pressures, as this appears to accelerate derecruitment and consecutive loss of ventilatory system compliance.

4.
Int J Infect Dis ; 122: 178-187, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1889494

ABSTRACT

BACKGROUND: Early prognostication of COVID-19 severity will potentially improve patient care. Biomarkers, such as TNF-related apoptosis-inducing ligand (TRAIL), interferon gamma-induced protein 10 (IP-10), and C-reactive protein (CRP), might represent possible tools for point-of-care testing and severity prediction. METHODS: In this prospective cohort study, we analyzed serum levels of TRAIL, IP-10, and CRP in patients with COVID-19, compared them with control subjects, and investigated the association with disease severity. RESULTS: A total of 899 measurements were performed in 132 patients (mean age 64 years, 40.2% females). Among patients with COVID-19, TRAIL levels were lower (49.5 vs 87 pg/ml, P = 0.0142), whereas IP-10 and CRP showed higher levels (667.5 vs 127 pg/ml, P <0.001; 75.3 vs 1.6 mg/l, P <0.001) than healthy controls. TRAIL yielded an inverse correlation with length of hospital and intensive care unit (ICU) stay, Simplified Acute Physiology Score II, and National Early Warning Score, and IP-10 showed a positive correlation with disease severity. Multivariable regression revealed that obesity (adjusted odds ratio [aOR] 5.434, 95% confidence interval [CI] 1.005-29.38), CRP (aOR 1.014, 95% CI 1.002-1.027), and peak IP-10 (aOR 1.001, 95% CI 1.00-1.002) were independent predictors of in-ICU mortality. CONCLUSIONS: We demonstrated a correlation between COVID-19 severity and TRAIL, IP-10, and CRP. Multivariable regression showed a role for IP-10 in predicting unfavourable outcomes, such as in-ICU mortality. TRIAL REGISTRATION: Clinicaltrials.gov, NCT04655521.


Subject(s)
C-Reactive Protein , COVID-19 , C-Reactive Protein/metabolism , COVID-19/diagnosis , Chemokine CXCL10 , Female , Humans , Intensive Care Units , Interferon-gamma , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , TNF-Related Apoptosis-Inducing Ligand
5.
ASAIO J ; 68(8): 1017-1023, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1865005

ABSTRACT

Coronavirus disease 2019 (COVID-19) has drastically increased the number of patients requiring extracorporeal life support. We investigate the efficacy and safety of low-dose recombinant tissue-type plasminogen activator (rtPA) injection into exhausted oxygenators to delay exchange in critically ill COVID-19 patients on veno-venous extracorporeal membrane oxygenation (V-V ECMO). Small doses of rtPA were injected directly into the draining section of a V-V ECMO circuit. We compared transmembrane pressure gradient, pump head efficiency, membrane arterial partial oxygen pressure, and membrane arterial partial carbon dioxide pressure before and after the procedure. Bleeding was compared with a matched control group of 20 COVID-19 patients on V-V ECMO receiving standard anticoagulation. Four patients received 16 oxygenator instillations with rtPA at 5, 10, or 20 mg per dose. Administration of rtPA significantly reduced transmembrane pressure gradient (Δ pm = 54.8 ± 18.1 mmHg before vs . 38.3 ± 13.3 mmHg after, p < 0.001) in a dose-dependent manner (Pearson's R -0.63, p = 0.023), allowing to delay oxygenator exchange, thus reducing the overall number of consumed oxygenators. rtPA increased blood flow efficiency η (1.20 ± 0.28 ml/revolution before vs . 1.24 ± 0.27 ml/r, p = 0.002). Lysis did not affect membrane blood gases or systemic coagulation. Minor bleeding occurred in 2 of 4 patients (50%) receiving oxygenator lysis as well as 19 of 20 control patients (95%). Lysis of ECMO oxygenators effectively delays oxygenator exchange, if exchange is indicated by an increase in transmembrane pressure gradient. Application of lysis did not result in higher bleeding incidences compared with anticoagulated patients on V-V ECMO for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Extracorporeal Membrane Oxygenation , Oxygenators, Membrane , Tissue Plasminogen Activator , Blood Gas Analysis , Extracorporeal Membrane Oxygenation/instrumentation , Extracorporeal Membrane Oxygenation/methods , Humans , Tissue Plasminogen Activator/therapeutic use
6.
Intensive Care Med Exp ; 9(1): 45, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1394470

ABSTRACT

BACKGROUND: Despite numerous advances in the identification of risk factors for the development of severe coronavirus disease 2019 (COVID-19), factors that promote recovery from COVID-19 remain unknown. Natural killer (NK) cells provide innate immune defense against viral infections and are known to be activated during moderate and severe COVID-19. Killer immunoglobulin-like receptors (KIR) mediate NK cell cytotoxicity through recognition of an altered MHC-I expression on infected target cells. However, the influence of KIR genotype on outcome of patients with COVID-19 has not been investigated so far. We retrospectively analyzed the outcome associations of NK cell count and KIR genotype of patients with COVID-19 related severe ARDS treated on our tertiary intensive care unit (ICU) between February and June 2020 and validated our findings in an independent validation cohort of patients with moderate COVID-19 admitted to our tertiary medical center. RESULTS: Median age of all patients in the discovery cohort (n = 16) was 61 years (range 50-71 years). All patients received invasive mechanical ventilation; 11 patients (68%) required extracorporeal membrane oxygenation (ECMO). Patients who recovered from COVID-19 had significantly higher median NK cell counts during the whole observational period compared to patients who died (121 cells/µL, range 16-602 cells/µL vs 81 cells/µL, range 6-227 cells/µL, p-value = 0.01). KIR2DS5 positivity was significantly associated with shorter time to recovery (21.6 ± 2.8 days vs. 44.6 ± 2.2 days, p-value = 0.01). KIR2DS5 positivity was significantly associated with freedom from transfer to ICU (0% vs 9%, p-value = 0.04) in the validation cohort which consisted of 65 patients with moderate COVID-19. CONCLUSION: NK cells and KIR genotype might have an impact on recovery from COVID-19.

7.
Case Rep Pulmonol ; 2021: 5546723, 2021.
Article in English | MEDLINE | ID: covidwho-1255645

ABSTRACT

BACKGROUND: In 2020, a novel coronavirus caused a global pandemic with a clinical picture termed COVID-19, accounting for numerous cases of ARDS. However, there are still other infectious causes of ARDS that should be considered, especially as the majority of these pathogens are specifically treatable. Case Presentation. We present the case of a 36-year-old gentleman who was admitted to the hospital with flu-like symptoms, after completing a half-marathon one week before admission. As infection with SARS-CoV-2 was suspected based on radiologic imaging, the hypoxemic patient was immediately transferred to the ICU, where he developed ARDS. Empiric antimicrobial chemotherapy was initiated, the patient deteriorated further, therapy was changed, and the patient was transferred to a tertiary care ARDS center. As cold agglutinins were present, the hypothesis of an infection with SARS-CoV-2 was then questioned. Bronchoscopic sampling revealed Mycoplasma (M.) pneumoniae. When antimicrobial chemotherapy was adjusted, the patient recovered quickly. CONCLUSION: Usually, M. pneumoniae causes mild disease. When antimicrobial chemotherapy was adjusted, the patient recovered quickly. The case underlines the importance to adhere to established treatment guidelines, scrutinize treatment modalities, and not to forget other potential causes of severe pneumonia or ARDS.

8.
Eur J Immunol ; 51(6): 1449-1460, 2021 06.
Article in English | MEDLINE | ID: covidwho-1159935

ABSTRACT

The pathogenesis of autoimmune complications triggered by SARS-CoV2 has not been completely elucidated. Here, we performed an analysis of the cellular immune status, cell ratios, and monocyte populations of patients with COVID-19 treated in the intensive care unit (ICU) (cohort 1, N = 23) and normal care unit (NCU) (cohort 2, n = 10) compared with control groups: patients treated in ICU for noninfectious reasons (cohort 3, n = 30) and patients treated in NCU for infections other than COVID-19 (cohort 4, n = 21). Patients in cohort 1 presented significant differences in comparison with the other cohorts, including reduced frequencies of lymphocytes, reduced CD8+T-cell count, reduced percentage of activated and intermediate monocytes and an increased B/T8 cell ratio. Over time, patients in cohort 1 who died presented with lower counts of B, T, CD4+ T, CD8+ T-lymphocytes, NK cells, and activated monocytes. The B/T8 ratio was significantly lower in the group of survivors. In cohort 1, significantly higher levels of IgG1 and IgG3 were found, whereas cohort 3 presented higher levels of IgG3 compared to controls. Among many immune changes, an elevated B/T8-cell ratio and a reduced rate of activated monocytes were mainly observed in patients with severe COVID-19. Both parameters were associated with death in cohort 1.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Monocytes/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Viral/immunology , B-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Female , Humans , Immunoglobulin G/immunology , Lymphocyte Count , Male , Middle Aged , Monocytes/pathology , Prospective Studies , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL